Improved electron field emission from morphologically disordered monolayer graphene
Srikrishna Pandey, Padmnabh Rai, Shashikant Patole, Fethullah Gunes, Gi-Duk Kwon et al.

Citation: Appl. Phys. Lett. 100, 043104 (2012); doi: 10.1063/1.3679135
View online: http://dx.doi.org/10.1063/1.3679135
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v100/i4
Published by the American Institute of Physics.

Related Articles
Using carbon chains to mediate magnetic coupling in zigzag graphene nanoribbons

Snake states and Klein tunneling in a graphene Hall bar with a pn-junction

Precision quantization of Hall resistance in transferred graphene

Effect of e-beam irradiation on graphene layer grown by chemical vapor deposition

Growth of triangle-shape graphene on Cu(111) surface

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors

ADVERTISEMENT
Improved electron field emission from morphologically disordered monolayer graphene

Srikrishna Pandey, Padmabh Rai, Shashikant Patole, Gi-Duk Kwon, Ji-Beom Yoo, Pavel Nikolaev, and Sivaram Arepalli

1Department of Energy Science, Sungkyunkwan University, Suwon 440746, South Korea
2Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS-UMR 6303, Université de Bourgogne, Dijon 21078, France
3Sungkyunkwan Advanced Institute of Nanotechnology and School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440746, South Korea

(Received 8 November 2011; accepted 4 January 2012; published online 24 January 2012)

Graphene was synthesized on copper foil by thermal chemical vapor deposition technique. To investigate the field electron emission property, planar graphene (PG) and morphologically disordered graphene (MDG) were fabricated on the doped silicon substrate by transfer of as-grown graphene. Incorporation of morphological disorder in graphene creates more emission sites due to the additional defects, edges, and atomic-scale ripples. This resulted in (1) a dramatic increase in the maximum current density by a factor of 500, (2) considerable increase in the enhancement factor, and (3) decrease in the turn-on field of MDG compared to PG. © 2012 American Institute of Physics. [doi:10.1063/1.3679135]

The efficient and stable electron field emission from carbon-based nanostructured materials has attracted considerable attention due to their unique structure and exceptional mechanical, chemical, and electrical properties. Field emission cathodes made of these materials have been proposed for applications such as flat panel displays, electron guns in electron microscopes, x-ray sources, and high power microwave amplifiers. The extraordinary mechanical, chemical, and electrical properties of two-dimensional graphene have attracted a great attention of scientific and industrial communities in recent years. Graphene is a promising material for field emission applications because of its low aspect ratio, chemical stability, and excellent electrical conductivity. Recently, few researchers have reported the electron field emission property of graphene film and few-layer graphene prepared by different techniques. Wu et al. fabricated chemically exfoliated single-layer graphene by electrochemical deposition technique, Qian et al. prepared screen-printed graphene, and Qi et al. synthesized vertically oriented graphene by plasma enhanced chemical vapor deposition techniques to investigate its field emission properties. Palnitkar et al. used boron and nitrogen doping of graphene (produced by arc discharge method) to tailor the turn on field. Feasibility of graphene for technological applications has been verified after synthesis of high quality large area and large scale graphene.

In this letter, we explored the effect of morphological disorder on field emission property of graphene synthesized by thermal chemical vapor deposition technique (CVD). Incorporation of morphological disorder in graphene resulted in improved field emission performance. A factor of 500 increase in the maximum current density of morphologically disordered graphene (MDG) with respect to planar graphene (PG) was observed. Moreover, a considerable increase in enhancement factor and decrease in turn-on field in MDG compared to PG was also observed.

Large area graphene was synthesized on copper foil by the thermal chemical vapor deposition technique. Copper foil of 70 cm × 35 cm × 70 μm dimensions was inserted into a cylindrical CVD quartz reactor and evacuated by rotary pump. The temperature of the reactor was ramped to 950 °C in the presence of H2 flow (80 sccm). After annealing of the copper foil for 1 h at this temperature, CH4 (250 sccm) and H2 (80 sccm) gases were introduced at the same temperature and 1.5 Torr pressure for 20 min to synthesize the graphene.

Graphene, thus obtained, was transferred on a p-doped silicon substrate for field emission study. The Cu foil was cut into 1 cm × 1 cm pieces, spin-coated with poly methyl methacrylate (PMMA), and immersed into Cu etchant solution (FeCl3) in order to etch away the Cu foil. After complete etching of copper, PMMA coated graphene sheets were rinsed in deionized water several times to remove etchant residues. PMMA coated graphene sheets were transferred on oxygen plasma treated and pristine p-doped Si (100) substrates and washed with acetone to remove PMMA and obtain PG and MDG samples, respectively. It was found that graphene adheres weakly to the pristine Si (100) surface and transfer process introduces morphological disorder in the form of agglomeration, discontinuity, additional edges, and ripples. On the other hand, oxygen plasma treatment of Si provides active sites that facilitate good adhesion to graphene, and the process resulted in a smooth and planar transfer of graphene (PG). Both samples (PG and MDG) were annealed at 300 °C in Ar flow for an hour to remove the residual particles trapped during transfer process and to improve the adhesion of graphene to the Si substrate. This resulted in p-doped silicon chips coated with graphene layer.

The PG and MDG samples were characterized by scanning electron microscopy (FESEM: JEOL JSM-7500F), atomic force microscopy (AFM: Veeco, Model: 840-012-711), and Raman spectroscopy (Renishaw, RM1000, 514.5 nm excitation).
wavelength). The electron field emission of graphene samples was measured in a high vacuum chamber with a parallel diode-type configuration at a base pressure of $\sim 10^{-7}$ Torr. The field emission current was measured at different voltages using an automatically controlled electrometer (Keithley 2001) and power supply (Fug Power HCN 700-3500).

SEM images of PG (graphene transferred onto oxygen plasma-treated Si substrate) are shown in Figs. 1(a) and 1(b) at different magnifications. Clearly, images confirm the planar and continuous nature of graphene. The dark wrinkled line in Fig. 1(b) may be associated with the graphene synthesis process. The difference in the thermal expansion coefficients of the copper foil and graphene has been found to introduce such wrinkles during the post-growth cooling.\(^{17}\) SEM images of MDG (graphene transferred onto pristine Si substrate) are shown in Figs. 1(d) and 1(e). A morphological disorder in the form of agglomeration, discontinuity, edges, and additional ripples of atomic dimensions can be observed in MDG samples. Figs. 1(c) and 1(f) show the topographic images of PG and MDG samples, respectively, obtained by AFM on a $5\mu m \times 5\mu m$ area. The AFM images are in agreement with SEM images and reveal the differences in heights of the topography as indicated by the inset bar.

Raman spectra of PG and MDG samples, recorded in the 1000-3200 cm\(^{-1}\) range are shown in Fig. 2. Three dominant Raman bands (D, G, and G\(^\prime\)-bands) which are fingerprint features of graphene are observable in the PG and MDG samples. In PG sample, the G-band which originates from the doubly degenerate phonon mode (E\(_{2g}\) symmetry) is centered at 1584 cm\(^{-1}\). The G\(^\prime\)-band which originates from a second-order process involving two phonons near the K point is observed at 2695 cm\(^{-1}\). The D-band that originates from backscattering of phonon by disorder (edges and defects) is centered at 1348 cm\(^{-1}\).\(^{17,19,20}\) All the Raman bands were analyzed by Lorentzian peak fitting. The intensity ratio of D to G-bands (I\(_D\)/I\(_G\)) and G to G\(^\prime\)-bands (I\(_G\)/I\(_G\)'\) for PG sample are 0.10 and 0.27, respectively. In the case of MDG sample, no significant shift in Raman bands was observed. But the I\(_D\)/I\(_G\) ratio was found to be 0.16, which reflects that MDG has additional edges and defects. The increased I\(_G\)/I\(_G\)' ratio (0.42) in MDG sample is associated with additional defects and edges present in it. The G\(^\prime\) band is an overtone of the D band and originates from backscattering of a phonon by an electron instead of a defect. Thus, the presence of additional defects suppresses the backscattering of phonons by electrons and consequently increases the I\(_G\)/I\(_G\)' ratio.

The field emission characteristics of PG and MDG samples are shown in Fig. 3. The emission current density as a function of applied electric field is shown in Fig. 3(a). The maximum emission current density of the PG sample was 0.007 mA/cm\(^2\) at 4.26 V/\(\mu m\) electric field intensity. The MDG sample, however, reached 3.52 mA/cm\(^2\) current density at the same field intensity, a factor of 500 increase compared to PG. The turn-on electric field (defined at 10 \(\mu A/cm^2\) emission current density) for PG and MDG samples was found to be 4.31 and 2.26 V/\(\mu m\), respectively. The field emission characteristics of the graphene samples were verified by Fowler-Nordheim (F-N) plot. According to F-N theory, the field emission current density \(J\) is related to the applied electric field \(E\) as

\[
J = A(\beta^2E^2/\phi)\exp(-B\phi^{3/2}/\beta E),
\]

where \(A = 1.56 \times 10^{-6} A V^{-2} eV, \quad B = 6.83 \times 10^7 eV^{-3/2} V^{-1}\), \(\beta\) is the field enhancement factor, \(\phi\) is the work function.
The calculated enhancement factors in low electric field region are 2382 for PG and 1818 for MDG, whereas the values in high electric field region are 270 for PG and 6 for MDG, respectively. The enhancement factors for the two types of graphene samples are larger for PG than for MDG.

The field emission property of planar graphene (PG) and morphologically disordered graphene (MDG) grown by thermal CVD technique was investigated. The field emission property of graphene was found to be improved considerably in morphologically disordered state. Additional defects and edges in the case of MDG were confirmed by Raman spectroscopy, SEM and AFM. These additional defects and edges translate into the reduction in the turn-on field and the large enhancement in the maximum emission current density.

This research was supported by the WCU (World Class University) program (R31-2008-10029) and Basic Science Research Program (2011-0006268), both through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology. We are also thankful to Professor Y. H. Lee’s group at SKKU for the use of thermal CVD for graphene growth.

8A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).